Misspecification in infinite-dimensional Bayesian statistics
نویسندگان
چکیده
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولBayesian Inconsistency under Misspecification
This is a synopsis of the work underlying the author’s contributed plenary presentation at the Valencia 8 meeting on Bayesian Statistics, held in Benidorm, June 2006. We show that Bayesian inference can be inconsistent under misspecification. Specifically, we exhibit a distribution P ∗, a model M with P ∗ 6∈ M, and a prior Π on M such that the prior puts significant mass on P̃ , the best approxi...
متن کاملStatistics of infinite dimensional random matrix ensembles
A complex quantum system with energy dissipation is considered. The quantum Hamiltonians H belong the complex Ginibre ensemble. The complex-valued eigenenergies Zi are random variables. The second differences ∆Zi are also complex-valued random variables. The second differences have their real and imaginary parts and also radii (moduli) and main arguments (angles). For N=3 dimensional Ginibre en...
متن کاملK2-ABC: Approximate Bayesian Computation with Infinite Dimensional Summary Statistics via Kernel Embeddings
Complicated generative models often result in a situation where computing the likelihood of observed data is intractable, while simulating from the conditional density given a parameter value is relatively easy. Approximate Bayesian Computation (ABC) is a paradigm that enables simulation-based posterior inference in such cases by measuring the similarity between simulated and observed data in t...
متن کاملBayesian Statistics BAYESIAN STATISTICS ∗
Mathematical statistics uses two major paradigms, conventional (or frequentist), and Bayesian. Bayesian methods provide a complete paradigm for both statistical inference and decision making under uncertainty. Bayesian methods may be derived from an axiomatic system, and hence provide a general, coherent methodology. Bayesian methods contain as particular cases many of the more often used frequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2006
ISSN: 0090-5364
DOI: 10.1214/009053606000000029